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Outline

• Introduction

• Tool for Turbine Engine Closed-loop Transient Analysis 

(TTECTrA)

– Features of the tool

– Application to C-MAPSS40k

• Mechanism for analyzing turbine engine dynamic performance

• Methodology to assess engine designs to closed-loop 

performance and operability requirements

– Application to C-MAPSS40k

• Benefits

• Summary
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Introduction

• Current engine design constraints are based on 

steady-state data and “worst-case” operating 

assumptions.
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Introduction

• Control design considers trade-off between 

performance (time-response) and operability (surge 

margins)

– Time response is the time required to transition from idle to 

95% max thrust for step-change (requirement < 5 seconds)

– Faster engine response necessarily requires operating 

closer to surge line

– Must balance trade-off through controller design 

specifications
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Tool for Turbine Engine Closed-loop 

Transient Analysis (TTECTrA)

• Provide an estimate of the closed-loop transient 

performance/capability of a conceptual engine 

design.

– Released under the NASA Github page: 

https://github.com/nasa/TTECTrA/releases

• Capable of automatically designing a controller for 

transient operation (subset of full controller).

• Easily integrates with a users engine model in the 

MATLAB®/Simulink® Environment.
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TTECTrA Control Architecture
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Commercial Modular Aero-Propulsion 

System Simulation 40,000 (C-MAPSS40k)

• 40,000 lb Thrust class high bypass turbofan engine 

simulation

• MATLAB/Simulink environment

9

• Publicly available 

to US Citizens

• Realistic controller

• Realistic surge 

margin 

calculations
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TTECTrA Output

• TTECTrA designs a 

controller to meet the 

defined control objectives 

and simulates closed loop  

response.

• Redesign control for 

varying operability 

constraints and observe 

closed loop performance.
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Mechanism for Analyzing Turbine Engine 

Dynamic Performance

• Analyze closed-

loop dynamic 

performance and 

operability 

margin.

• Compare various 

engine designs 

or determine if 

constraints are 

conservative.
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CMAPSS40k

Modified

• Modified design has better efficiency in terms of TSFC 

at cruise and takeoff 

Csank, J.T, and Zinnecker, A.M., “Application of the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) for Dynamic 

Systems Analysis,” AIAA-2014-3975, 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, OH, July 28-30, 2014.
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Assessment to Meet Closed-loop 

Performance and Operability Requirement

- Closed-loop system should provide some guaranteed 

performance level throughout engine life cycle

- Need a way to characterize effect of engine aging on 

performance level

- Consider cases of random aging, rather than an assumed 

trend based on average/typical engine (more general 

description of aging)

- Develop metrics for describing the design 

requirements to meet this performance level and for 

comparing engine models

12



National Aeronautics and Space Administration

www.nasa.gov

Data Collection

• Application of methodology requires an engine model 

that uses health parameter h to define engine age 

(deterioration)

– h corresponds to efficiency and flow modifiers for each of the 

major turbo-machinery components

– Each element of h is between 0 (new) and heol (end-of-life)

13

• Collect data from 2 sets 

of simulations

– Known (anticipated) life 

conditions

• New, mid-life, end-of-life

– Randomly aged engines

• independently, uniformly 

sample each element of h 

from 0 to heol
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Defining Elliptical Boundaries on 

Performance Level

• Fit the Monte Carlo data at each trial design point into 

an ellipse

– Length and rotation of ellipse x-axis based on new, mid-life, 

and end-of-life

– Length of top- and bottom-half ellipse y-axes based on rest of 

Monte Carlo data
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• Relate design point 

(minSMd) to performance 

level (minSMa and tr)

• Relate performance level 

to ellipse parameters

• Least squares approach 

to determine coefficients
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Application of the Elliptical Boundaries on 

Performance Level

• Curve fit contains information regarding shape of 

nominal curve and how ellipse parameters change as 

function of design point.
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Finding the Limiting Design Points

• Implement binary search procedure to estimate 

limiting design point meeting either minimum HPC 

surge margin or maximum response time limit.

– Utilize curve fits and defined relationships to find design limit 

which meets either requirement.

• Based on fixed number of design points and Monte Carlo 

simulations to evaluate each design point.

• Reduces the total number of design points and simulations to 

evaluate engine design. 
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Application of the Limiting Design Points

• Compare both original C-MAPSS40k and modified 

version of C-MAPSS40k
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ModifiedC-MAPSS40k
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(Quantitative) Metrics for Comparison

• Three metrics defined to help compare models 

through performance-operability trade-off and 

robustness due to aging

1. Distance from nominal to limit

for which controller was designed

2. Distance from nominal to limit 

for which it was not designed

3. Distance from nominal to 

intersection of two limits
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Benefit of Dynamic Systems Analysis

• Extremes

– Small transient stack with a 

very long response time

– Large transient stack with a 

very fast response time

• Known uncertainty stack

• Distance between 

uncertainty stack and the 

constraint is transient 

stack

• Faster response 

correlates to unnecessary 

transient margin.
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• With ellipse, better define point near ideal operating point!

• Better defining transient stack required could allow design 

constraint to be adjusted and engine redesigned.
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Summary

• Developed tools to analyze closed-loop dynamic 

performance and operability margin

– Tool for Turbine Engine Closed-loop Transient Analysis 

(TTECTrA)

• Design closed loop controller and analyze dynamic performance

– Assessment to Meet Closed-loop Performance and 

Operability Requirement 

• Analyze performance and operability throughout engine life 

cycle

– Mechanism for Analyzing Turbine Engine Dynamic 

Performance

• Identify tradeoffs between dynamic performance and operability
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Thank you!

Any Questions?
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